Effect of Post-Deposition Annealing On Hydrogenated Amorphous Silicon Thin Films Grown At High Power by Pecvd
نویسندگان
چکیده
The crystallization of hydrogenated amorphous silicon layers (a-Si:H) [1,2] deposited by plasma enhanced chemical vapor deposition (PECVD) is of great interest. Generally, laser or metals are used to induce crystallization in aSi:H films. We have found that films deposited at high rf power (> 0.2 W/cm2) by PECVD technique shows some crystallites embedded in a-Si:H matrix and their after its vacuum thermal annealing at 250 and 300 C helps to further enhancement of crystallite size. These films were characterized using , UV-VIS spectrometry, Raman Spectra, of these films were measured as a function of temperature in the range of 300 C to 250 C. Keyword: Amorphous silicon, Thin Films, Growth PECVD.
منابع مشابه
Surface roughening during plasma enhanced chemical vapor deposition of hydrogenated amorphous silicon on crystal silicon substrates
Surface roughening during plasma enhanced chemical vapor deposition of hydrogenated amorphous silicon on crystal silicon substrates" Physical Review B. The morphology of a series of thin films of hydrogenated amorphous silicon ͑a-Si:H͒ grown by plasma-enhanced chemical-vapor deposition ͑PECVD͒ is studied using scanning tunneling microscopy. The substrates were atomically flat, oxide-free, single-cr...
متن کاملOn the influence of ICP–PECVD deposition parameters and annealing on the properties of a–Si:H passivation layers
Hydrogenated amorphous silicon (a–Si:H) can be applied as a passivation layer in silicon heterojunction (SHJ) solar cells. In this project, depositions of a–Si:H thin films have been carried out using ICP–PECVD under several deposition conditions. This has been done to gain insight into the deposition process and how the properties of the deposited film can be controlled. To reach this goal, th...
متن کاملOptimization of PECVD process for ultra-thin tunnel SiOx film as passivation layer for silicon heterojunction solar cells
Ultra-thin silicon oxide (a-SiOx:H) films have been grown by means of plasma enhanced chemical vapor deposition (PECVD) to replace the standard hydrogenated amorphous silicon (a-Si:H) passivation layer for silicon heterojunction solar cells to reduce parasitic absorption. Additionally, silicon oxide surfaces are well known as superior substrates for the nucleation enhancement for nanocrystallin...
متن کاملRole of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells
In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films...
متن کاملControlled Crystallization of Hydrogenated Amorphous Silicon Thin Films by Nanocrystallite Seeding
Microcrystalline silicon thin films have attracted much attention in recent years in active matrix-liquid-crystal displays and photo-voltaic solar cells. This is due primarily to their superior transport over amorphous alternatives while maintaining a significantly lower manufacturing cost over conventional wafer-grown silicon. The general goal of current microcrystalline development efforts is...
متن کامل